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Introduction
P53 has been dubbed “guardian of the genome”1 or gatekeeper2 

due to its central role in maintaining the genomic stability and tumor 
suppression.3‒5 It has been found to be mutated in about half of 
the human cancers.6,7 Since its discovery p53 has been subject to a 
tremendous amount of work making it one of the most extensively 
studied gene. Its tumor suppressive role consists in inducing anti-
proliferative cellular responses to a variety of stress signals, namely 
a cell-cycle arrest, senescence or an apoptosis. P53 can then be 
activated in response to DNA damage, hypoxia, or aberrant growth 
signals resulting from deregulated expression of oncogenes.8‒10 Under 
normal conditions p53 is expressed at low level as a result of the 
action of the ubiquitin-protein ligase MDM2, that repress p53 through 
ubiquitin-mediated degradation.11,12 In response to a stress signal 
as DNA damage p53 undergoes post-transcriptional modifications 
(phospho-rylation and acetylation) by various kinases, including 
ATM, ATR, DNA-PK, Chk1, and Chk2.13 These modifications 
activate p53 by inhibiting MDM2 from binding to its N-terminal and 
allow it to carry out its major function as a transcription factor that 
binds to specific DNA sequences and activate the transcription of 
adjacent genes. By inducing the expression of its target genes p53 
induces cell-cycle arrest or apoptosis. MicroRNAs (miRNAs) are 
small (20-25 nucleotides) non-coding RNAs that negatively regulate 
gene expression post transcriptionally by base-pairing to the 3’UTR 
of target mRNAs leading to repression of protein production or 
mRNA degradation (For a recent introduction see for example.14 A 
single miRNA can target hundreds of different mRNAs, and a single 
mRNA can be coordinately suppressed by multiple different miRNAs, 
they are involved in many biological processes, in particular cancer-
relevant processes such as proliferation, cell cycle control, apoptosis, 
differentiation, migration and metabolism. A miRNA can have 
either oncogenic or tumor suppressive function. Examples of tumor 
suppressor miRNAs are let-7 family, miR-29, miR-34 and miR-15, 
and of oncogene miRNAs are miR-17-92, miR-155 and miR-221. 
The biogenesis of miRNAs can be summarized as follows: a primary 
transcript (PRI-miRNA) is first generated by RNA polymerase 
as separate transcriptional units or embedded within the introns 

of protein coding genes. Then the primary transcript is processed 
by the microprocessor complex containing the RNase III enzyme 
Drosha to an approximate 70-nucleotide (nt) pre-miRNA hairpin 
(the precursor-miRNA).15‒17 Pre-miRNAs are subsequently exported 
to the cytoplasm by exportin 5(XPO5)18,19 where their terminal loops 
are excised by the RNase III Dicer to give rise to a double-stranded 
22nt stem composed of 5’âĂš and 3’âĂš strands representing 5p and 
3p respectively. While one of the two strands (the passenger strand 
miRNA*) is discarded, the other one (the guide) is then embedded 
into the RISC (RNA Induced Silencing Complex) to complementary 
target mRNA for post-transcriptional gene silencing.20

Since it was believed that according to the thermodynamic stability 
of the pre-miRNA cells preferentially select the less stable one of the 
two strands (the guide) and destroy the other one (the miRNA*), 
early works on miRNAs have focused on the guide strand (which was 
usually considered as the 5p one because it was found to be more 
abundant than its counterpart miRNA* in humans.21 However, even 
though miRNA* are less abundant they are often present and remain 
functional because they conserve their seed sequences and have been 
isolated from RISC.22,23 It has been shown by profiling analyses that 
both strands could be co-accumulated in some tissues while being 
subjected to strand selection in others.24‒26 The interplay between the 
5p and 3p strands from the same precursor has been shown either 
in arm-switching where the dominant miRNA is switched from 
one arm of the precursor to the other27 or by targeting overlapping 
sets of genes when the abundances of the two strands are similar.28 
Functional 5p and 3p have been characterized for many miRNAs. 
Examples include miR-9,29 miR-17,30 miR-19,23 miR-28,31 miR-30c,32 
miR-125a,33 miR-142,34 miR-155,35 miR-199,36,37 miR-223,38 miR-
342,39 miR-2015,40 miR-18a,41 miR-582.42 In some cases the two arms 
function in opposing ways (e.g. miR-28,31 and miR-12533), while in 
others they function in joint fashion (e.g. miR-19937 and miR-15535). 
miRNAs have been shown to be important components in the p53 
network Their interactions with p53 have been demonstrated through 
the identification of several miRNAs as direct target genes of p53. 
By inducing the expression of specific miRNAs that have a tumor 
suppressive function a novel mechanism for tumor suppression for 
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Abstract

In contrary to the common belief that only one strand of the pre-miRNA is active 
(usually the 5p one) while the second one is discarded, functional 5p and 3p have 
been observed for many miRNAs. Among those miRNAs is miR-34a which is a target 
gene of the tumor suppressor p53. In this paper we have re-examined the role of miR-
34a-5p and miR-34a-3p in the signaling pathway of p53. We found that they target 
overlapping sets of genes (MDM2 and THBS1). By a GO enrichment analysis we 
found that THBS1 is involved in cancer and metastasis relevant processes. We have 
also deduced that p53, MDM2 and miR-34a form a I1-FFL that can speed the response 
of p53 to external stress signals.
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p53 has been then revealed. In particular the role of the miR-34 family 
has been reported in several studies.43 In mammalians miR-34 family 
consists of miR-34a, miR-34b and miR-34c,that are encoded by two 
different genes. miR-34a is encoded by an individual transcript in 
chromosome 1 and expressed in a majority of tissues, while miR-
34b and miR-34c share a common primary transcript in chromosome 
11 and are mainly expressed in lung tissues. Several studies have 
reported that the members of miR-34 family were direct target genes 
of p53 and their up regulation induces apoptosis and cell-cycle 
arrest.44‒50 Indeed, ectopic expression of miR-34 induces cell cycle 
arrest in both primary and tumor-derived cell lines.50 Inactivation of 
miR-34a strongly attenuates p53-mediated apoptosis in cells exposed 
to genotoxic stress mir-34b/mir-34c were also down-regulated in p53-
null human ovarian carcinoma cells and both cooperate in suppressing 
proliferation of neo plastic epithelial ovarian cells.45 Since cell-cycle 
arrest and apoptosis are the responses of p53 to the stress signals, 
these facts imply that miR-34 mediate the tumor suppressive function 
of p53. On the other hand the members of the miR-34 family can 
have decreased expression in cancer because of the inactivating 
mutations of p53 or the expression of viral inhibitors of p53, but also 
as a consequence of their own mutational or epigenetic inactivation.

Since 30% of all genes and the majority of the genetic pathways 
are regulated by miRNAs,51‒53 we can expect some miRNAs to 
regulate p53 and its pathway. This hypothesis has been verified and 
some miRNAs have been identified as regulators of p53. miR-504 can 
negatively regulate p53 expression through its binding to two binding 
sites in human p53 3âĂš-UTR.54It has also been reported that miR-
125b is another miRNA targeting p53.55 Another regulator is miR-29 
that was identified as a positive regulator of p53 that up-regulate p53 
protein levels and induce p53-mediated apoptosis through repression 
of p85Îś.56 Furthermore, miR-34a, which is a transcription target of 
the p53 protein, was also found to positively regulate p53 activity and 
function in apoptosis through its direct negative regulation of SIRT1.57 
SIRT1 is a negative regulator of p53, which physically interacts with 
p53 and de acetylates Lys382 of p53.58 The purpose of this paper is the 
study of the role of both miR-34a-5p and miR-34a-3p in the signaling 
pathway of the p53.

Materials and methods
We begin by using DIANA-miRPath v3. 0 which is a miRNA 

pathway analysis web-server, providing accurate statistics utilizing 
predicted or experimentally validated miRNA interactions derived 
from DIANA-TarBase.59 We first perform a KEGG reverse search for 
miRNAs in the p53 signaling pathway (|hsa04115) by choosing the 
tar Base v 7.0 for method. In the same web-server we obtain the tar-
get genes of the different miRNAs that we found. The distribution of 
the target genes in the pathway can also be displayed. Then we use 
the cytoscape 3.4.0 software to visualize the interactions where the 
relevant genes are involved.60 We take the int Act1to be our source of 
interactions. We filter by taxonomy identifier to restrict the obtained 
network to the human case. In order to form clusters of genes that 
share a similar function we use the cluster Maker, a Cytoscape 
application with the GLay Community Clustering algorithm. The 
BiNGO, a Cytoscape Plugin61 gives the Gene Ontology (GO) terms 
that are significantly overrepresented in each cluster.

Results and discussion
The result of the KEGG reverse search was a list containing 660 

different miRNAs including hsa-miR-34a-5p (p-value=1.840530e-100) 

and hsa-miR-34a-3p (p-value=4.325757e-5). The respective p-values 
can be interpreted as expressing the fact that 5p is more abundant than 
3p. The list of target genes contains 30 genes for miR-34a-5p and two 
for miR-34a-3p (MDM2 and THBS1) that are also target genes of 
the miR-34a-5p. The involvement of these genes in the p53 signaling 
pathway is shown in (Figure 1). THBS1By loading the list of the 30 
target genes of miR-34a-5p (containing also the two targets of miR-
34a-3p) in Cytoscape 3.4.0 and searching the interactions in Int Act 
we obtain a network composed of 2492 node and 6493 edges. After 
clustering this network by the cluster Maker application we obtain the 
result shown in (figure 2) where the cluster containing THBS1 was 
highlighted, this cluster is shown in (figure 3). In order to find the 
pathways in which the THBS1 gene is involved we use the BINGO 
application of Cytoscape, and the relevant GO terms that are over 
expressed in the corresponding cluster are given in (Table 1) Int 
Act is one of the largest available repositories for curated molecular 
interactions data, storing PPIs as well as interactions involving other 
molecules. It is hosted by the European Bioinformatics Institute. Int 
Act has evolved into a multisource curation platform and many other 
databases curate into IntAct and makes their data available through 
it.23 According to this analysis we can deduce that the THBS1 gene is 
involved in regulating tumor suppression processes. But it is also clear 
that it contributes to some anti metastatic pathways like angiogenesis 
and cell adhesion.

Figure 1 The signaling pathway of p53 with the target genes of miR-34-5p/3p 
highlighted.

Figure 2 The result of the clustering of the initial network representing 
different interactions of the target genes of miR-34a-5p/3p.
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Figure 3 The cluster representing THBS1 and its interactions.

Table 1 GO term enrichment for the THBS1

GO terms over expressed p-value

Regulation of response to external stimulus 2:34 10 6

Regulation of response to stress 3:09 10 6

Regulation of cell adhesion 6:29 10 4

Positive regulation of apoptosis 5:48 10 3

Negative regulation of cell-matrix adhesion 3:07 10 3

Induction of apoptosis 1:42 10 3

Negative regulation of angiogenesis 6:48 10 3

MDM2

MDM2 and p53 form a negative feedback loop, in which p53 
induces the expression of MDM2 which mediates the degradation of 
p53.62,63 Indeed, in unstressed cells p53 is present at very low levels due 
to the continuous degradation by ubiquitination which is mediated by 
MDM2. In stressed cells, in order for p53 to accumulate in response 
to stress signals it has to escape the degradation by MDM2. In human 
cancers if the p53 is not mutated its wild-type function is inhibited 
by the high level of MDM2, leading to the down regulation of its 
tumor suppressive pathways Thus, the inhibition of the MDM2-p53 
interaction represents a promising therapeutic strategy for the 
treatment of cancer. According to the previous result miR-34a can 
contribute to the regulation of this interaction and guarantee a faster 
p53 response to external stimuli. Indeed, since MDM2 is a target gene 
of miR-34a which means that it is negatively regulated by this miRNA, 
we can re-present the interaction between the three molecules (p53, 
MDM2 and miR-34a) as a Feed Forward Loop (FFL). According to 
the signs of the three interactions (activation/repression) the present 
loop is a type 1 incoherent FFL (I1-FFL) (figure 4). The dynamics of 
this FFL can be described as follows: (figure 5) when p53 begins to 
accumulate as a response to stress signals MDM2 first rises since it is 
positively regulated by this gene. The level of miR-34a begins also to 
increase since it is a direct target gene of p53. When the expression 
of miR-34a reaches some threshold MDM2 begins to decrease. It has 
been demonstrated that the response time of the I1-FFL is smaller than 
the one of a single regulation system.64 In addition to this speedup 

feature the I1-FFL can produce non-monotonic response also called 
an amplitude filter or bi-phasic response. In this type of response, the 
output MDM2 first increases with the input signal that activates p53 
(stress signal), but decreases when the signal is high.65 Thus in cases 
where speedy responses are needed this type of regulatory loop is 
more advantageous than the simple one. In our case MDM2 is the 
principal cell antagonist of p53 that limits its anti growth function 
in normal cells, and the I1-FFL constitute a novel mechanism that 
accelerates the stabilization of p53 in response to external stimilus.

Figure 4 Type 1 incoherent FFL composed of p53, miR-34a and MDM2.

Figure 5 The dynamics of the I1-FFL.
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